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Institut National de la Recherche Agronomique, Unité Mixte de Recherche 614, Fractionnement des Agro Ressources et
Emballages, Moulin de la Housse, BP 1039, F-51687 Reims Cedex 2, France

Received 3 November 2004; accepted 1 June 2005
DOI 10.1002/app.23112
Published online in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: This study dealt with decision trees as used
to predict diffusion coefficients (D’s) in polyolefins of mol-
ecules with molecular weights ranging between 50 and 1200
g/mol at 23 and 40°C. The approach was tested on 657 D’s
(267 molecules) mainly collected by the European working
group SMT-CT98-7513. According to a reptation-like mech-
anism of transport, three topological molecular descriptors,
the Van-der-Waals volume, the gyration radius, and a di-
mensionless shape parameter, were proposed as both clas-
sifiers and regressors. They were calculated from the mini-
mized and oriented structure in the absence of interaction
with the polymer matrix. The foreseen ability of regression
trees was tested by both cross-validation and bootstrap sam-
pling for a wide number of classes. Optimally pruned trees
provided correlation coefficients ranging between 0.74 and

0.96 for each tested polymer. The effects of the volume of
diffusing molecules predominated in polyethylene, whereas
a combination of the three parameters was required in
polypropylene. D overestimates, which are particularly use-
ful for checking the compliance of food contact materials,
were derived and validated from the upper percentiles of
the D values observed in each terminal class. The use of
decision trees as a tool for data assimilation is discussed. We
concluded that the proposed descriptors were a priori (with-
out a preliminary fitting) able to gather molecules with
similar D values without introducing any significant bias.
© 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2167–2186, 2006
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INTRODUCTION

The identification of relationships between transport
properties and chemical structure has major impor-
tance in the design of polymer-based products such as
packaging materials, membranes, and substrates for
biosensors or biotechnological applications. Quantita-
tive structure relationships can be used to either ex-
trapolate results to new substances or materials or
infer homology rules for molecules with similar prop-
erties. From the conceptual point of view, a multiscale-
driven knowledge approach starting from atomistic
interactions at the level of picometers and nanometers
up to macroscopic scales would be more satisfactory
than any other approach because it would explicitly
assume a transport mechanism. This strategy is, how-
ever, tractable via molecular dynamics simulation or
mesoscopic modeling only for small molecules.1,2 One
of the last recorded runs for the simulation of a 100-ns
trajectory of limonene in low-density polyethylene
(LDPE) was between 77 and 227°C.3 Because of inher-
ent calculation limitations, more pragmatic ap-
proaches may be preferred when predictions are ad-

dressed to a large a set of molecules, to medium or
large-size molecules, or to relatively low tempera-
tures. Identified correlations between measured prop-
erties and chemical structures are a possible alterna-
tive. It requires, however, a significant amount of ref-
erence values obtained in similar conditions for a
representative set of molecules. Recently, a European
working group, with whom two of us participated,
collected the diffusion coefficients (D’s) available in
the literature for polyolefins.4 This study was aimed at
the assessment of the feasibility of the use of mathe-
matical modeling to check the compliance of food
contact materials against specific migration limits.
This possibility was subsequently introduced in an EU
regulation (EU-DG SANCO, 2002)5 as an alternative to
costly and time-consuming migration experiments
with food simulants. With the logic of the develop-
ment of robust and simple relationships for D estima-
tion in the purpose of compliance checking, an arbi-
trary Arrhenius-like relationship was proposed. Three
predictors were used: a polymer-dependent constant,
the molecular weight (M) of the considered diffusant,
and the temperature. It was demonstrated that this
model was almost robust for overestimating the D’s of
molecules with M’s ranging between 100 and 800
g/mol. However, the variable positive bias between
the predicted and measured properties up to 3 de-
cades did not make it a possible reliable extension for
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complex situations (e.g., multilayered materials, recy-
cled materials, reactive systems) or for quantitative
risk assessment. Indeed, the combination of bias in the
mathematical modeling of the diffusion of substances
is responsible for unrealistic migration quantities and
uncontrolled uncertainties. A more trustworthy ap-
proach is based on the combination of a probabilistic
approach and likely D estimates, as described by Vit-
rac and Hayert6 (see also Vitrac and coworkers7,8).

The purpose of this study was to investigate the use
of decision trees [classification and regression tree
(CART) algorithms] for the reliable estimation of D’s
in polyolefins at room temperature or at 40°C. In
addition, because CART algorithms generate a hier-
archical classification of data, they were used to define
comprehensive homologies between the diffusants
with regard to their diffusion ability.

CART decision trees are a nonparametric technique
for adaptive data-driven modeling; they are quite dis-
tinct in form but similar in aim to various forms of
nonlinear regression. As an advantage over estab-
lished parametric techniques, CART algorithm results
are nondeterministic (no analytical expression is re-
quired), and they can handle both continuous and
categorical variables. Because they are clearly con-
structed, they provide a good compromise between
comprehensibility and accuracy and a high computa-
tional efficiency and modularity.9 Also, the recursive
partitioning algorithm mimes a very common cogni-
tive approach whereby information is acquired se-
quentially through a series of questions, with each
question depending on the answer to the previous one
and each question locally maximizing the expected
information about the goal (here the classification of
molecules or the prediction of D’s).

Because molecular diffusion in amorphous and
semicrystalline polymers is related to the size and
fractal dimension of the diffusant,10 predictors related
to the three-dimensional (3D) molecular structure of
diffusants have been preferred. According to a likely
transport mechanism by reptation11 or in a Rouse
regime,12 topological quantities, including Van der
Waals volume (VWdV), the gyration radius (�), and a
shape parameter (Iz/x), have been more particularly
investigated and tested as classification criteria and D
predictors. Similar descriptors (e.g., volume, degree of
asymmetry, spherical envelope) were reviewed by Ko-
varski13 to explain the different dependences between
rotational and translational frequencies observed dur-
ing the diffusion of low-molecular molecules. The pre-
dictive approach was tested on 345 molecules and 628
D data collected by the European project SMT-CT98-
7513 (Hinrichs and Piringer)4 from the literature and
industries and on 29 data experimentally obtained by
Reynier and coworkers in controlled conditions.14,15

Because few data were available on the physical prop-
erties, such as density and crystallinity, of the tested

polymer matrices, different CART models were de-
vised for each polymer type, but they were based on
3D predictors, which were calculated from molecular
structures minimized in vacuo. This strategy seemed
reliable for the prediction of the reptation-like trans-
port of medium-size molecules (i.e., with M’s typically
ranging between 50 and 1000 g/mol) in noninteracting
matrices such as polyolefins as it maximized the steric
volume and the unfolding of the diffusant. As a result,
the intrinsic topological properties of the diffusants
could be stored in the same database and used to
predict D’s in different polymers.

In this article, we propose a nonparametric and
nonlinear 3D quantitative structure relationship that
improved the correlations proposed by the SMT-
CT98-7513 program,4 which were fitted on data highly
disparate in quality, including both well-documented
values and data roughly extrapolated from simple
migration tests. Indeed, our growing tree procedure
used probabilistic splits that aggregated data (or mol-
ecules) that did not present statistically different prop-
erties (i.e., that led to a significant overfit bias). For a
given set of molecules, the proposed approach could
be used to devise either a robust likely D estimate or a
D overestimate based on the 50th and 90th percentiles
of the available D values.

The article is organized as follows: the Experimental
section describes the D data available in the EU data-
base4 and the methodology used to minimize the 3D
structures of all the molecules. General and in-depth
analyses of the models are grouped in the section
Results and Discussion. For each set of molecules, the
distribution of topological quantities was first de-
scribed and discussed according to possible correla-
tion with M, which is the main parameter used as
predictor in the technical report.4 The relevance of the
chosen predictors was examined a priori by checking
whether the inferred classification trees relying only
on topological properties were able to aggregate mol-
ecules with similar D’s. The validation of regression
trees was finally studied with computer-intensive ap-
proaches, including both cross-validation and boot-
strap sampling. The article ends with conclusions and
a discussion on the practical use of the proposed mod-
els either (1) to perform realistic risk assessment or (2)
to check the compliance of plastic materials intended
to be in contact with food.

EXPERIMENTAL

D data

The underlying data set consisted of four subsets, as
detailed in Table I. Each subset corresponded to D
data obtained for a claimed equivalent polymer type
and obtained or normalized at the same temperature.
The three first subsets were the 628 data collected by
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the EU SMT-CT98-7513 program from literature (most
data) and from laboratories. Only 302 data (48%) were
really determined at the indicated temperature. The
other data were either (1) extrapolated from D values
obtained at a different temperature or (2) derived from
migration data (obtained mainly at 40°C). The proce-
dure to standardize all data was documented in the
technical report EUR 20604EN.4 These data were ob-
tained on variable matrices, the density and the crys-
tallinity of which were usually not documented. It
was, however, thought that the large number of data
including repetitions (up to 10) coupled with such a
robust identification technique as CART algorithms
made it possible to compensate the inherent discrep-
ancy in each data subset. In the same manner, the
large number of different molecular structures (up to
214 for LDPE) might be used to test a very significant
number of combinations of molecular parameters to
predict D values.

By contrast, the last subset comprised data that we
already published14,15 and obtained at 40°C for the
same polypropylene (PP) matrix in carefully designed
test conditions. The smaller number of data (29 ob-
tained for 26 different molecules) did not, however,
allow a general classification of diffusants but was
used to test the relevance of the selected predictors on
an independent sample and at different temperatures.

3D structure of diffusants

All of the molecular structures were designed within
the Materials Studio 3.0 platform (Accelrys, San Diego,
CA). The 3D structure of each molecule was calculated
with unconstrained energy minimization within the
commercial module of molecular mechanics and dy-
namics called Discover (Accelrys). The potential en-
ergy of the molecules, related to bond and bond angle
distortion terms, torsional potentials, intramolecular
repulsive and attractive interactions (i.e., Van der
Waals), and electrostatic (i.e., Coulombic) interactions,
was calculated from the Compass force field (Accel-
rys). This robust force field, derived from ab initio
calculations and including both diagonal and off-di-
agonal cross-coupling terms, is particularly suitable

for organic covalently bonded molecules, such as
small gas molecules, aromatics, and plastic additives.
For the few chemical groups that were not covered by
Compass (e.g., phosphoric groups as encountered in
secondary antioxidants), a generic covalent force field
was used. Minimizations were performed with a con-
jugate gradient method starting from a random set of
initial configurations.

Further calculations and visualizations were per-
formed with a proprietary toolbox called QSPR-MS
developed for both the commercial suites Matlab
(Mathworks, Natick, MA) and the freely available
Scilab (INRIA, France). The toolbox was designed to
manage native Materials Studio files coded in XML
format and to interact with the main modules of mo-
lecular mechanics and dynamics.

3D molecular descriptors

Each minimized molecule was oriented along its prin-
cipal axes. Examples of minimized and subsequently
oriented structures are presented in Figure 1 for six
typical molecules. The projections along the principal
axes (x, y, and z) are also depicted along with the value
of the calculated descriptors.

VWdV was determined from the numerical tessella-
tion of the inner volume within its Van der Waals
envelope. Our calculations were in good agreement
with the simplified summation procedure defined by
Zhao et al.16

� of a molecule including n atoms was calculated
from eq. (1):

�2 � ��x� i � x� 0�2�i�1 . . . n (1)

where ��i�1. . .n is the average operator over all atoms of
the considered molecule, x�i is the position vector of the
atom i and x�0 is the position vector of the center of
mass. � of the diffusant with respect to its centroid is
related to the size of an equivalent spherical molecule
with a similar moment of inertia.

Iz/x is defined as the ratio of the moments of inertia
along the axes of minimal and maximal inertia with

TABLE I
Sets of Data (Polymers, Molecules, Temperature, and D Values) Used to Train and Validate the

Proposed Decision Trees

Polymer
Temperature

(K)
Number

of D data
Number of
molecules

Mmin
(g/mol)

Mmax
(g/mol) Source

LLDPE–LDPE 296 345 214 16 1177 Ref. 4
MDPE–HDPE 296 142 69 16 1177 Ref. 4
PP 296 141 62 28 1777 Ref. 4
PP 313 29 26 156 807 Refs. 14 and 15

Mmin, the minimum of the molecular weights in the current subset; Mmax the maximum of the molecular weights in the
current subset.
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respect to the center of mass, z and x, respectively. For
almost spherical molecules, this ratio was close to 1,
whereas it was much greater than 1 for linear mole-
cules (Fig. 1). In contrast with �, which compares the
molecule shape with a sphere, Iz/x assesses the simi-
larity of the shape of the molecule with a rod geome-
try. Because in classical mechanics the moment of
inertia with respect to an axis is related to the rota-
tional kinetic energy around the considered axis, this
ratio also compares the ability (probability in statisti-
cal mechanics) of a molecule to rotate at its centroid
around its weakest and strongest axes.

CART procedures

The CART procedure we used was similar to the one
described by Breiman et al.17 it is designed to divide
recursively a population of molecules (classification
tree) or D’s (regression tree) into subpopulations de-
fined by their 3D molecular descriptors in terms of
their risk-factor categories (due to either misclassifica-
tion or error in prediction). The characteristic tree
structure was reached by a stepwise division of the
population at a node into dichotomous branches in
such a way that subpopulations were internally as
homogeneous and externally as heterogeneous as pos-
sible with respect to some specified criteria. For clas-
sification trees, the criterion was based on the Gini
index and was calculated as the impurity function
[i(t)]. For any parent node t, which contained data

belonging to Jt � 2 number of classes (where Jt is the
number of child nodes at node t), i(t) was defined as

i�t� � 1 � �
j�1

Jt

p2�j�t� (2)

where p(j�t) is the proportion of each class jj�1. . .Jt
in the

node so that �j�1
J p(j�t)�1. At each node, the CART

procedures used an exhaustive search over all possible
variables to identify the split that maximized the de-
crease in impurity. A branch stopped growing when
the impurity could not be further decreased.

For regression purposes, log D was chosen as the
dependent variable as a result of the large dispersion
of D values. The two-way splitting process was
guided by a least-squares error criterion [�e(t,s)]. At
each parent node t, the best split was the split that
maximized a function similar to eq. (2):

�e�t,s� � e�t� � �
j�1

Jt

e�j�p2�j�t� (3)

where s is the tested split value and e(t) is the mean
squared error at the parent node. The mean squared
error at node j [e(j)], including the number of data [Nj],
was calculated as follows:

e�j� �
1
Nj

�
i�1

Nj

�log10�Di� � �log10�Di��i�1 . . . Nj	
2 (4)

Figure 1 Values of topological descriptors for six typical molecules: (a) �-pinene, (b) limonene, (c) BHT, (d) Chimassorb 90,
(e) Irganox 1076, and (f) Irgafos 168. The values are ordered as VWdV, �, and Iz/x. All molecules were oriented along their main
axes (x, y, and z); the three main projected surfaces are also depicted.
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It was verified that the low dimension of the pre-
dictor space (3) prevents the unrestrained search pro-
cedure from preferably selecting the variable that gen-
erates more splits.18 The tree construction was
stopped when it was determined that there were not
enough data to make reliable choices. The stop crite-
rion was based on a variance homogeneity test. This
strategy, known as prepruning, prevented too much
overfitting/overlearning in the initial full tree, as ex-
plained later. For a given training sample of mole-
cules, the number of terminal nodes (or classes) in the
full tree was, therefore, lower than the number of log
D values (or molecules).

Any path from the top node to a leaf (subpartition)
could be seen as a conjunction of logical tests on the
predictor variables (i.e., decision path). For each ter-
minal leaf of the regression tree, a constant value of
the target variable was predicted. Because, for the
same training sample of molecules, the achieved full
tree structure usually suffered from overfitting (i.e., it
was explaining random discrepancies between mole-
cules that were not likely to be features of the larger
population of molecules/data), the final structure was
inferred from simplifications (i.e., size reduction) of
the considered decision tree. As a result of a clear
trade-off between the number of partitions (leaves)
and the predictive accuracy of the tree, the number of
nodes was reduced by the postpruning of the full tree
on the basis of cross-validation results. Cross-valida-
tions relied on successive validations (10 iterations) of
the fitted tree on independent subsamples (blind sam-
ples). The initial learning sample was split into 10
subsamples, chosen randomly but with almost equal
size. For each subsample, we assessed the prediction
error starting from a tree fitted from the 90% remain-
ing data. The optimal tree was a pruned tree whose
resusbtitution (simplification) error was of the same
magnitude as the cross-validation error. For a given
regression tree, a more reliable estimation of the error
prediction rate with uncertainty bound was obtained
with a bootstrap procedure. The bootstrap technique
involved choosing random samples with replacement
(i.e., given data can appear multiple times in the same
bootstrap sample) and fitting them against available
data. The number of observations in each bootstrap
sample equaled the number of data in the learning
sample. The range of prediction errors between 1000
samples was used to establish the uncertainty on the
determination coefficient (r2).

RESULTS AND DISCUSSION

For a similar set of molecules, the D values are more
spread out in solids than in liquids or gases. They may
differ by more than a factor of 1010 and are difficult to
estimate via theoretical models.19 Diffusion in poly-
mers involves several different mechanisms, depend-

ing on the relative size of the diffusant and the mobil-
ity of the entangled polymer chains. As a result, dif-
fusion rates should lie between those of liquids and
solids. The molecular weight (M) or the spherical rep-
resentative volume of the diffusant20 has been pro-
posed in many models to predict or to overestimate D
values in polymers on the basis of either semiempiri-
cal or mechanistic considerations. The first part of our
results reviews possible scaled relationships between
collected D values with M. Possible correlations be-
tween the proposed diffusant descriptors (VWdV, �,
and Iz/x) with M and log10 D are also discussed.

Descriptive statistics of the 3D molecular
descriptors

Because, at the scale of the diffusant, diffusion is re-
lated to the fluctuation of the position of center of
mass, D values are expected to vary with the number
of atoms or groups in the molecule. If the movements
of individual atoms or groups within the same mole-
cule remains mainly uncorrelated and with nondis-
parate variances, as a result of constraints or friction
with the polymer, the central limit theorem imposes
that D values decrease as the reciprocal of M (or
equivalently the number of atoms) with a phenome-
nological exponent connecting D and M (�) close to 2.
This transport mechanism is known as reptation. The
molecules diffuse like snakes because of contour
length fluctuations.21 If a combination of contour
length fluctuations and constraint release occurs,
Lodge proposed an � value of 2.4.22 If some self avoid-
ance in the movements of atoms occurs, an � value
significantly lower than 2 is expected instead. If the
diffusant dynamics is mainly dominated by interac-
tions along its main axes, a Rouse regime may occur;
this is identified by an � value of 1.23 If the transport
of the diffusant obeys a hopping mechanism that leads
to highly correlated displacements of atoms, the effect
of the free volume is predominant and an � value
lower than 1 (ca. 0.6) is then expected. On the opposite
end, if significant entanglements limit the displace-
ment of the diffusant, � values greater than 3 may
occur.24 Different scaling coefficients in reptation-like
models were reviewed by Masaro and Zhu25 The val-
ues, which were reported for the self-diffusion of
polymer chains in bulk and in solution, ranging be-
tween 0.56 and 3.3. Additional discussions on the
connection between the reorientational dynamics of
diffusants and segmental dynamics were discussed by
Kovarski26 and Manabe.27

To discuss the possible mechanism of the transport
of medium-weight molecules in polyolefins, Figure 2
shows the collected D’s against M’s on a log–log scale.
The plotted surface of each marker is proportional to
Iz/x. Straight lines with slopes of � � 0.6, 1, 2, and 3 are
also plotted. The line � � 2 crosses the center of the
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scatter. The other lines intercept the latter at the lowest
M value.

For the tested polymers, the distribution of D values
was not directly correlated to the distribution of M
values. For linear low-density polyethylene (LLDPE)–
LDPE, the mechanism of reptation (� � 2) was very
likely for a wide range of molecules. An upper bound
of D’s was established with the assumption of a Rouse
regime and � � 1. Also, a hopping mechanism based
only on free volume considerations was very unlikely.
A lower bound of D’s would exist in a restrained
mechanism such that � 
 3. As the D values varied up
to 3 decades for the same M, we inferred that comple-
mentary parameters were required to predict D. We
calculated that up to 40% of the observed variance
within the available data could not be explained by M.
Different mechanisms of transport could occur for
diffusants with similar M values. Figure 2(a) shows in
particular that the deviation from a reptation mecha-
nism (� � 2) toward an entangled mechanism (� 
 2)

was more probable for asymmetric molecules with a
Iz/x value greater than 30. However, we emphasize
that the observed discrepancy in D values should have
been partially related to the experimental error or to
the procedure to extrapolate data from different tem-
peratures and/or from migration data. So to prevent
misleading conclusions, suitable models should not
generate significant bias between values available
within this database and the predicted ones. In addi-
tion, an optimal predictive model should lead to an
error similar in magnitude to the error inherent to the
experimental and normalization methodologies. In
our approach, a quantification of the uncontrolled er-
ror, which was assumed to be random, was provided
either by the repetition of D measurements with dif-
ferent methodologies (when available) or by the com-
parison of D values obtained with homologous mole-
cules (almost always achievable).

Very similar conclusions were drawn from the D
values obtained with medium-density polyethylene

Figure 2 Log–log plot of D versus M in (a) LLDPE–LDPE at 23°C, (b) MDPE–HDPE at 23°C, (c) PP at 23°C, and (d) PP at
40°C. The surface area of each symbol is proportional to Iz/x. Theoretical variations of D with M are also depicted with the
assumption that the transport of the average molecule obeyed a reptation model (� � 2).
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(MDPE)–high-density polyethylene (HDPE) normal-
ized at 23°C. The set of studied molecules was differ-
ent in number and type among the four studied poly-
mers. The heterogeneity of � values was particularly
high between the 62 molecules tested in PP at 40°C,
with a likely mechanism such that � was greater than
or equal to 2. In the set of molecules tested at 40°C in
PP, all 29 D values were derived from the same plastic
material without any extrapolation. This shows that
the � values were lower than 1 for molecules with M
values below 200 g/mol, whereas � values greater
than 3 were more probable for diffusants with higher
M values. The low number of molecules and the ab-
sence of homologous series made impossible to accu-
rately locate the transition between a transport mech-
anism controlled by the free volume of the diffusant
and a mechanism controlled by constraints between
the diffusant and the polymer.

In this study, we examined three properties (VWdV,
�, and Iz/x) that could be related to the previous wide
range of identified mechanisms of transport at the
molecular scale. Because these quantities were exten-
sive, they were expected to be partially correlated with
the number of atoms and, hence, with M. The corre-
lation between all of these quantities and log10 D were
analyzed and are shown as scatter plots in Figure 3 for
the LLDPE–LDPE data at 23°C. A topological index,
the third-order Kier and Hall cluster count index28 (c),
was used to group data according to the size and the
degree of the branching of the molecules. A cluster was
defined by a pattern with a connectivity similar to a
isobutane. As a result, the parameter c measured the

number of isobutane patterns in a molecule. The dis-
tributions of M, VWdV, �, and Iz/x were asymmetric to
the right, whereas the log10 D distribution was asym-
metric to the left. The high linear correlation between
the M and VWdV quantities was responsible for the
large similarity between their distributions, which
presented both two modes and similar ranges when
expressed in grams per mole and in Å3. � and Iz/x were
only partially correlated with M. The relationship be-
tween � and M was almost linear for c � 0 and c � 1
but with slightly different slopes. When c was greater
than 1, � and M were poorly correlated. Similarly, Iz/x

was nonlinearly correlated with M when c was less
than or equal to 1 and was independent of M when c
was greater than 1. � and Iz/x were both correlated
with log10 D except for low Iz/x values (i.e., for almost
spherical molecules). Compared to M, these predictors
generated similar or even lower scatter with collected
log10 D values when c was less than or equal to 1. Iz/x

seemed, in particular, a pertinent predictor of log10 D
values for molecules characterized by c � 0 (i.e., with-
out any ring and poorly ramified).

Similar observations were made with the three
other sets of molecules. The main results are summa-
rized in Figure 4. log10 D was significantly correlated
with either M or VWdV. A correlation existed with �,
which varied significantly according to the value of c.
This effect was clearly observable for the set of mole-
cules tested in MDPE–HDPE and was more tenuous
for both sets of molecules tested in PP. Finally, only
molecules with c values lower or equal than 1 exhib-
ited a decreasing correlation of log10 D � Iz/x. This last
result confirmed that Iz/x was a pertinent parameter
mainly for molecules that did not present a globular or
highly clustered structure. D values spreading over
more than 2 decades independent of the used descrip-
tors was observed for molecules with M above 550
g/mol. This discrepancy was related to a higher ex-
perimental error because the corresponding very low
D values were the more difficult to assess. Besides, the
diffusion behavior of such molecules may have been
more sensitive to the detailed microstructure of the
polymer.

Prediction of log10 D from an a priori tree
classification of molecules

Intuitively, a pertinent predictor based on the molec-
ular structure of diffusants should be also a good
classifier because it is expected to regroup molecules
with similar log10 D values whatever the tested poly-
mer. In other terms, a decision tree, based on the
proposed properties (VWdV, �, and Iz/x), which is not
trained to predict D’s, should have been able to clas-
sify a priori a set of molecules according to their log10
D values. The ability of the classification tree to gather
a priori molecules with homogeneous log10 D values

Figure 3 Scatter plots of the predictors and the dependent
variable grouped according to c. Only the results corre-
sponding to LLDPE–LDPE at 23°C are depicted.
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was analyzed and is shown in Figure 5 for the four
sets of molecules. For each set, a maximal classification
tree was first optimized over the whole sample of
molecules to their VWdV, �, and Iz/x values. The tree
was afterwards successively pruned until the number
of terminal nodes (i.e., classes) was reduced to a sin-
gleton. For each set of molecules, Figure 5 plots the
value of the average of log10 D in each class according
to the number of classes (here, the square root of
number of classes) and the distribution of log10 D
values. The obtained figure is a two-dimensional to-
pological representation of the initial full tree that
describes how log10 D values were shifted toward the
average of the whole sample when the information on
molecular structure of diffusants was reduced. To il-
lustrate the drastic effect of the data reduction
achieved with the iterative classification process, Fig-
ure 5 depicts also the links (in gray lines) between the
raw D values (i.e., as collected) and typical D values

obtained with the full classification tree. We empha-
size that the full classification tree minimized the
number of molecules per class and gathered molecules
whose topological parameters were the most homoge-
neous. Along the pruning level or, equivalently, along
the number of terminal nodes, the iterative classifica-
tion was interpreted differently. Starting from the full
classification, disparate D values for similar molecular
structures appeared as fingered leaves when the com-
plexity was decreased. The amplitude of digitations
provided a possible measure of the inhomogeneity in
the initial D values mainly due to the uncertainty in
the initial data set. Also, the shape of the so-plotted
tree revealed whether log10 D data were close after an
a priori classification. A bush shape was generated by
a significant number of crossover branches due to
significant initial misclassifications of data. By con-
trast, a regular shape/homothetic shape was inter-
preted as a convenient classification without, how-

Figure 4 Scatter plots of the dependent variable, log10 D, versus each tested predictor in (a) MDPE–HDPE at 23°C, (b) PP
at 23°C, and (c) PP at 40°C. The data are grouped according to c.
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ever, providing any information on its optimality to
predict D values.

A variance analysis on the log10 D values demon-
strated that an a priori classification of molecules ac-
cording to the full classification tree resulted in an

intraclass variability of a similar magnitude as the
estimated uncertainty in the collected D values (Table
II). Both variances had statistically similar magnitudes
in samples tested in LLDPE–LDPE at 23°C and in PP
at 40°C. After classification, the intraclass variance

Figure 5 A priori clustering of D values according to the pruning level of the full classification tree for (a) LLDPE–LDPE at
23°C, (b) MDPE–HDPE at 23°C, (c) PP at 23°C, and (d) PP at 40°C. n is the remaining number of terminal nodes after tree
pruning. For each class of molecules, the typical D value was assumed to be equal to the average D value. The distribution
of D values (bins) and the corresponding fitted log-normal distribution (continuous line) are also depicted. The gray lines
depict how individual D data were grouped into classes. �, �, �, �, and � are the typical classes that are discussed in the section
Prediction of log10 D from Regression Trees.

TABLE II
Comparison of the Intraclass Variance of log10 D Estimates with the Uncertainty in Collected Data

Polymer Temperature (K) r (%) F p 
 F Significance

LLDPE–LDPE 296 26 0.91 0.76 Not significant
MDPE–HDPE 296 54 1.7 0.006 Very significant
PP 296 66 2.4 �0.001 Extremely significant
PP 313 12 2.3 0.26 Not significant

F, ratio between the intraclass variance assessed after the classification and the typical variance observed between
repetitions (uncertainty in collected data). Because the uncertainty in the collected data was only based on molecules
including repeated D values, F values lower than 1 could occur: r � the fraction of molecules including repeated D values.
The classification was based on the optimal classification tree. The uncertainty was assessed from the variance in D values
collected for the same molecules.
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was only about 72 and 140% higher after the proposed
a priori classification of samples tested in MDPE–
HDPE at 23°C and in PP at 40°C, respectively. Because
the initial uncertainty and the achieved intraclass vari-
ability were almost homogeneous, we inferred that the
three tested parameters were able to classify a priori
and in a satisfactory manner the collected log10 D
values. This conclusion was strengthened by the low
disordered shape of the classification trees when the
number of terminal nodes was reduced. In particular,
we emphasize that molecules with extreme diffusivi-
ties were appropriately identified even with very sim-
plified classification trees. The best results were ob-
tained with the sets of molecules including the largest
diversity (LLDPE–LDPE, MDPE–HDPE). For all sets
of molecules, the risk of misclassification seemed
higher for molecules with log10 D values close to the
average of the whole sample. Because this risk was
drastically reduced when the complexity of the tree
was reduced, this effect could have been related to the
high variability of initial data. Indeed, the average
diffusivities in the polyolefins (for the three sets at
23°C) were estimated from methods that were highly
disparate in quality and that included both interpo-
lated and noninterpolated data. The uncertainty was
estimated up to 1.5 decades (ranges between digita-
tions). On the contrary, extreme diffusivities were
thought to be more reliable as they were mainly in-
ferred from well-documented migration experiments
(case of low diffusivities) or from well- controlled gas
permeation experiments (case of high diffusivities).

Prediction of log10 D from regression trees

The regression procedure acted as a learning stage
dedicated to minimizing the risk of misclassification
(as previously defined) of molecules. A regression
tree, therefore, took advantage of intrinsic classifica-
tion properties of the tested predictors and also of
significant improvements due to learning. The results
derived from regression trees can finally be inter-
preted in the same way as classification results de-
picted in Figure 5.

To finely analyze the effect of learning/fitting, the
full regression tree based on the whole sample of data
were first plotted (Fig. 6) and compared with the
results derived from the corresponding full classifica-
tion tree (Fig. 5). The average error of misprediction
was analyzed for different simplification levels of the
full regression tree starting from both cross-validation
testing and bootstrap sampling. The so-considered op-
timal regression tree is plotted in Figures 10 and 11
(shown later) with the conditional tests that made it
possible a practical use for D prediction.

Regressions tress based on the whole sample

Figure 6 plots the full regression tree corresponding to
Figure 5. All four regression trees exhibited a more
regular structure without significant crossovers. They
revealed, in particular, how extreme values could be
combined with other values along the simplification
process, which was aimed at reducing the number of
terminal nodes. Starting from the full tree (including
75, 30, 28, and 5 terminal nodes, respectively, for the
sets tested in LLDPE–LDPE at 23°C, MDPE–HDPE at
23°C, PP at 23°C and PP at 40°C), we first combined
the median values before combining the intermediate
and extreme values. The trees, whose number of ter-
minal nodes was reduced by a factor up to four, kept,
therefore, almost similar ranges of log10 D values. The
classification procedure combined with a learning
stage acted to preserve the main features of the initial
distribution of the log10 D values after the classifica-
tion. As a result, the number of recombinations was
higher where the number of D data was higher, that is,
mainly around the mode of the distribution of log10 D
values, whereas it was significantly lower for the mol-
ecules with extreme D values.

The effect of learning is discussed for three small
subsets of molecules tested in MDPE–HDPE at 23°C
[classes �, �, and � as noted in Fig. 5(b)] that were
nonoptimally classified for D prediction when the
complexity was reduced. The subsets �, �, and � are
depicted in Figure 7; they included, respectively, 2, 4,
and 1 molecules with Ms higher than the average. The
first subset, as generated by a priori classification, was
merged into a class of 29 molecules [�; 42% of tested
molecules, depicted in Fig. 8(b)] when the number of
terminal nodes was reduced from 26 down to 17. This
poorly selective grouping led to an overestimate of the
average D value of the class a by a factor up to 75. The
mode of grouping of the two last subsets was more
dramatic for D prediction, as they were merged into
the same huge class of 53 molecules (77% of the total)
located on the opposite side of the D scale. After
additional grouping, the average D values of subsets �
and � were overestimated by a factor of up to 3
decades when the number of terminal nodes was re-
duced down to 8.

When a regression tree was used instead of a clas-
sification tree, the molecules included in subsets �, �,
and � were distributed into three distinct classes, �, �1,
and �2, including, respectively, 12, 5, and 5 molecules.
The list of properties of the corresponding molecules
is summarized in Table III. Staring with a full regres-
sion tree consisting of 30 terminal nodes, we overes-
timated the average D values of the initial classes only
by a factor lower than 5 for molecules belonging to
subsets � and �, whereas it was underestimated only
by a factor of 4 for molecules belonging to subset �.
This significant improvement in the classification due

2176 VITRAC, LÉZERVANT, AND FEIGENBAUM



to regression (learning) is illustrated in Figure 8 with a
comparison of the molecules belonging to the equiv-
alent class � when a classification tree was substituted
by a regression tree. The new class was smaller and
appeared more homogeneous, as it contained only
molecules with similar sizes including one or two
rings or equivalently ramified shapes so that they had

similar inertia. This last class exhibited a 95% confi-
dence range of D values lower than 1 decade, which
was in very good agreement with our initial intuition:
molecules with similar 3D structures had similar D
values, as they obeyed the same transport mecha-
nisms. However, this analysis does not provide any
information on the robustness of the classification.

Postpruning optimization

The previous qualitative description of regression
trees was not sufficient to determine which pruning
level was optimal for each set of molecules. The cross-
validation and bootstrap results are summarized in
Figure 9(a,b) for the set of molecules tested in LLDPE–
LDPE at 23°C. Similar results were obtained for the
three other sets of molecules. A too-high reduction in
the tree complexity was responsible for a dramatic
increase of the average quadratic error of prediction
[	2; Fig. 9(a,b)]. By contrast, increasing the tree com-

Figure 6 A posteriori clustering of D’s according to the pruning level of the regression tree for (a) LLDPE–LDPE at 23°C, (b)
MDPE–HDPE at 23°C, (c) PP at 23°C, and (d) PP at 40°C. n is the remaining number of terminal nodes after tree pruning. For
each class of molecules, the typical D value was assumed to be equal to the average D value. The distribution of D values
(bins) and the corresponding fitted log-normal distribution (continuous line) are also depicted. �, �, �, �, and � are classes that
correspond to the classes noted in Figure 5 (b).

Figure 7 Compact molecular structure (CPK) molecular
structure of molecules corresponding to subsets �, �, and �
[defined in Fig. 5(b)]. All molecules were minimized in
vacuo and projected along their two principal axes.
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plexity beyond a certain threshold led to an increasing
prediction error [Fig. 9(a)]. r2’s exhibited similar be-
havior, as their values were significantly lower in the
bootstrap samples than in the whole sample when the
number of terminal nodes increased [Fig. 9(b)]. These
effects are known as underfitting and overfitting. Un-
derfitting produced excessive bias in the predicted
log10 D values, whereas overfitting generated exces-
sive variance between the predictions. Both measures
of performance on validation and bootstrap samples
provided different optima, ranging between 8 and 22
classes. Cross-validations usually led to a lower num-
ber of classes than that estimated by bootstrap sam-
pling and led to values that varied significantly (ca.
30%) between repetitions. Within the expected range
of the optimal pruning range, the choice to grow a
given branch or to remove nodes was based on our
expertise and on the capacity of the generated tree to
gather similar chemical structures and to preserve some

specific features related to some outstanding chemical
structures initially present within the set of molecules.

The risk of overfitting was all the higher when the
sample used for fitting/learning was small (e.g., set
tested in PP at 40°C). In our approach, the risk of
overfitting was counterbalanced by the use of a low
number of molecular attributes that seemed both per-
tinent classifiers and predictors even without prior
fitting/learning. For robustness purposes, the number
of terminal nodes was chosen to be almost propor-
tional to the square root of the number of different
molecules in each tested sample.

Optimized (postpruned) regression trees

The regression with optimum postpruning levels are
plotted in Figures 10 and 11 for the four tested sam-
ples, and their main characteristics are reported in
Table IV. The log10 D value at each node (either ter-
minal or not) corresponded, respectively, to the aver-
age and to the 90th percentile (Figs. 10 and 11) of the
gathered log10 D values. Thus, Figures 10(a) and
11(a–c) plot realistic log10 D estimates, whereas Fig-
ures 10(b) and 11(d–f) plot log10 D overestimates with
a risk of 10%. The corresponding splitting conditions
appeared at each node so that the left branch had to be
chosen when the test value was true and the right
branch had to be chosen otherwise.

The plotted regression trees included 25, 9, 10, and
4 terminal nodes for the molecules tested in LLDPE–
LDPE at 23°C, MDPE–HDPE at 23°C, PP at 23°C and
PP at 40°C (Table IV) , respectively. The order of
appearance of each variable along each regression tree
revealed their respective weights for the prediction of
log10 D. The effects of volume (VWdV) predominated in
all of the samples tested in polyethylene [Figs. 10(a)
and 11(a)], whereas both �, and VWdV controlled the
dispersion of the log10 D values of the sample tested in
PP at 23°C. In the sample tested in PP at 40°C, a
cutting volume of 538 Å3 combined with different Iz/x

values defined how the values of the D’s were spread
over the log10 D scale. Because of the risk of overfit-
ting, the combination of the three predictors was
mainly used to separate the classes of the most docu-
mented molecules (i.e., including a significant number
of repetitions). As a result of the overrepresentation of
molecules with M’s ranging between 120 and 450
g/mol in the database (see Figs. 3 and 4), each pruned
tree exhibited a dense structure close to the median of
the log10 D values and was sparser outside. The en-
tanglement level was low and was at a maximum
where the density was at a maximum. As a result, the
regression trees based on the average log10 D values of
each class were well-balanced and almost symmetric
[Figs. 10(a) and 11(a–c)]. On the contrary, regression
trees based on the 90th percentile values deviated
toward high log10 D values [Figs. 10(b) and 11(d–f)].

Figure 8 Compact molecular structure (CPK) molecular
structures of molecules belonging to the class � as defined in
(a) Figure 5 (b) (classification) and (b) Figure 6 (b) (regres-
sion). All molecules were minimized in vacuo and projected
along their two principal axes.
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The shift was higher, up to 2 decades, for classes corre-
sponding to the highest log10 D values, and they were on
the opposite lower for classes with the lowest log10 D
values. For each leaf/terminal class including more than
one log10 D value and possibly more than one molecule,
the 90th percentile provided a pessimistic D value (i.e., a
reliable overestimate) that could be used to assess with
enough safety the migration of any known or unknown
molecule. If more safety is required, the number of ter-
minal nodes could be reduced to increase the number of
data corresponding to each terminal class and, therefore,

to increase the robustness of the estimation of the upper
percentile. We emphasize that the proposed approach
does not require any assumption on the distribution of D
values. One can decrease the risk of underestimating the
true D coefficient as low as possible by choosing a priori
an appropriate upper percentile.

Decision trees as a tool for data assimilation

Regression trees could replace advantageously raw
collected data, which are intrinsically disparate in

TABLE III
Molecular Descriptors and log10 D Data for All Diffusants Presented in Figures 8 and 9

Code Chemical name CAS no.
VWdV
(Å3)

�
(Å) Iz/x

log10 D
(m2/s) log10 (D)min

log10 (D)max
(m2/s) n

P106
2-Methoxy-4-(2-propenyl)phenol

(eugenol) 97-53-0 162.0 3.32 4.98 �13.9 �13.9 �13.9 1
P112 Diphenylmethane 101-81-5 172.0 3.23 5.41 �13.5 �13.5 �13.5 1
P113 Diphenyl oxide (phenoxy benzene) 101-84-8 164.0 3.21 5.07 �13.4 �13.4 �13.4 1
P12 Neopentane 463-82-1 95.7 1.98 1.00 �12.8 �13.1 �12.6 2
P13 n-Pentaue 109-66-0 96.1 2.35 9.15 �12.6 �12.6 �12.6 1
P14 Butanal (n-Butylaldehyde) 123-72-8 81.8 2.00 11.39 �12.4 �12.4 �12.4 1
P15 Butyl alcohol 71-36-3 87.4 2.20 9.85 �12.5 �12.6 �12.3 2
P153 2,4-Dihydroxybenzophenone (DHB) 131-56-6 191.0 3.53 4.93 �14.4 �14.5 �14.3 2

P158
2,6-Di-tert-butyl-4-methylphenol

(ionol or BHT) 128-37-0 243.0 3.56 2.65 �15.0 �15.5 �13.9 4
P16 Benzene 71-43-2 84.1 2.02 2.00 �12.4 �12.5 �12.4 2

P161
2-Hydroxy-4-methoxy

benzophenone (Chimassorb 90) 131-57-7 207.0 3.90 5.97 �14.4 �14.4 �14.4 1
P171 2-Hydroxy-4-butoxybenzophenone 15131-43-8 260.0 5.00 9.94 �14.7 �14.7 �14.7 1

P196
2-2 -Methylenebis(6-tert-butyl-4-

methylphenol (Antioxydant 2246) 119-47-1 356.0 4.82 4.88 �15.9 �16.0 �15.8 2
P20 Pentanal 110-62-3 98.6 2.32 15.50 �12.6 �12.6 �12.6 1
P21 n-Hexane 110-54-3 113.0 2.70 13.35 �12.4 �12.5 �12.2 3

P220
1,1,3-Tris(2-methyl-4-hydroxy-5-tert-

butyl-phenyl)butane (Topanol CA) 1843-03-4 575.0 5.44 2.61 �13.3 �13.3 �13.3 1
P231 n-Butylaldehyde 123-72-8 81.8 2.00 11.39 �12.3 �12.4 �12.2 2
P233 2-Phenylethylalcohol 60-12-8 126.0 2.70 6.65 �13.6 �13.6 �13.6 1

P235
3,7-Dimethyl-1,6-octadien-3-yl

acetate (linalyl acetate) 115-95-7 216.0 3.66 4.52 �14.1 �14.1 �14.1 1
P25 Ethylacetate 141-78-6 90.1 2.35 4.73 �12.6 �12.7 �12.5 2
P27 1-Pentanol 71-41-0 105.0 2.53 14.50 �12.5 �12.5 �12.5 1
P28 2-Pentanol 6032-29-7 105.0 2.27 3.74 �12.6 �12.6 �12.6 1
P29 Toluene 108-88-3 101.1 2.32 3.17 �12.5 �12.5 �12.5 2
P33 cis-3-Hexen-1-ol 928-96-1 116.0 2.66 6.49 �12.8 �12.8 �12.8 1
P34 Ethylpropionate 105-37-3 107.0 2.72 6.70 �11.9 �11.9 �11.9 1
P36 2-Hexanol 626-93-7 121.0 2.72 7.21 �12.8 �12.8 �12.8 1
P39 p-Xylene 106-42-3 117.0 2.65 4.73 �12.3 �12.3 �12.3 1
P43 Ethylbutyrate 105-54-4 124.0 3.05 8.01 �12.0 �12.1 �12.0 2
P57 Amylaceticester (isoamylacetate) 123-92-2 141.0 3.06 7.75 �13.1 �13.1 �13.1 1

P62
4-Isopropenyl-1-methyl-1-cyclohexen

(limonene) 138-86-3 158.0 2.91 4.75 �13.2 �13.2 �13.2 1
P81 Dimethylbenzylcarbinol 100-86-7 159.0 2.87 4.07 �14.3 �14.3 �14.3 1
P85 Carbon tetrachloride 56-23-5 81.5 1.55 2.00 �13.3 �13.3 �13.3 1

P87
3,7-Dimethyl-6-octen-1-al

(citronellal) 106-23-0 178.0 3.46 10.84 �14.3 �14.3 �14.3 1

P92
2-Isopropyl-5-methylhexanone

(menthone) 89-80-5 173.0 3.00 3.68 �14.2 �14.2 �14.2 1

n, the number of D values per molecule.
log10 (D)min and log10 (D)max are respectively the minimum and the maximum of the collected log10 D values.
CAS no., the chemical abstracts service number.
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number and quality. This process is known as data
assimilation and is aimed at the control and standard-
ization of the quality of available data. Depending on
the goal, this process may be performed continuously
when new data are available or in batch mode when a
significant amount of new data are collected. Further-
more, it may be used to devise either realistic D values
or convenient overestimates. The sampling of mole-
cules or methodologies and the choice of predictors
may significantly affect how data are assimilated into
new cognitive structures such as decision trees. To
illustrate these possible effects, mismatches between
the data and the model, based on either the average
and the 95th percentile of each terminal/leaf class, are
plotted in Figures 12 and 13, respectively, for each set
of molecules. Predicted values obtained with the full
regression tree and with the optimally pruned tree are
plotted. Figures 12 and 13 do not depict the validation
results, as the regression trees were, in this case, fitted
over the whole sample, but illustrate the closeness (Fig.
12) or the overestimation (Fig. 13) of the predicted results
when they replaced the initial data. Because, the tested
predictors were also pertinent a priori classifiers, the in-
trinsic ability of the predictors to assimilate new (un-
known) data is illustrated in Figure 14.

Figure 12 shows that regression coefficients (r’s)
were higher than 0.89 even for the pruned trees. In
other words, 89% of the whole variance was at least
explained by the proposed models. The discrepancy
between the predicted values and the data is summa-
rized in Table V. The deviation between D values

ranging between 0.51 and 1.15 decades for the full tree
and did not increase dramatically when the pruning
level was increased because it ranged between 0.79
and 1.31 decades for the optimally pruned tree. As a
result of few D values for large molecules (
700
g/mol), the deviation was higher when the expected
D value was lower.

Figure 13 presents how the D values based on the
95th percentile of each class overestimated the D value
available in the database. The number of values,
which were lower than the reference values, is also
depicted. A quantification of the possible D underes-
timation is given in Table VI. As expected, the full tree
overestimated or exactly predicted the true D. An
equality condition corresponded mainly to a terminal
class/leaf that included a single D value. As a pruned
tree gathers more data and molecular structures, the
size of each class was expected to increase and its 95th
percentile could either underestimate or overestimate
the data-training sample. A satisfactory pruning level
should have generated an amount of underestima-
tions that was similar to an a priori risk level (i.e., 5%
for a regression tree based on 95th percentile values).
The optimally pruned regression trees verified under-
estimation rates of 4.9, 3.5, 5.0, and 0%, respectively
for the sets of molecules tested in LLDPE–LDPE at
23°C, MDPE–HDPE at 23°C, PP at 23°C, and PP at
40°C (Fig. 13). The maximum underestimation was
lower than 0.36 decades and occurred mainly for the
set tested in MDPE–HDPE at 23°C. Compared to the
noise present in the data and the generally recognized

Figure 9 Effect of tree pruning on the error on the prediction error (for LLDPE–LDPE at 23°C). The results were obtained
with (a) 10-fold cross-validation and (b) 1000 bootstrap samples. The results are expressed as r2 values, sums of 	2 values, and
p 
 F values.
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Figure 10 Optimized (postpruned) regression trees for LLDPE–LDPE at 23°C based on the (a) average log10 D values of each
class and (b) 90th percentile log10 D values of each class. The corresponding splitting conditions are indicated at each node.



accuracy of conventional methods to assess D values,
these differences were considered of poor significance.
We emphasize that the use of well-controlled D data
(the set of molecules tested in PP at 40°C) did not lead
to any estimation of D values.

In the previous discussion, we assumed that a
complete training of the regression tree was per-
formed on a significant amount of data. In practice,
it would be useful to estimate an unknown D or its
overestimate from more general conditions, for in-
stance, from its molecular structure similarities with
a small set of molecules with well-known proper-
ties. Thus, we would intuitively expect that the new
molecule would have a D similar to the molecules
that resemble it. This homologous approach based

Figure 11 Optimized (postpruned) regression trees based on the average log10 D values of each class for (a) MDPE–HDPE
at 23°C, (b) PP at 23°C, and (c) PP at 40°C and based on the 90th percentile log10 D values of each class for (d) MDPE–HDPE
at 23°C, (e) PP at 23°C, and (f) PP at 40°C. The corresponding splitting conditions are indicated at each node.

TABLE IV
Main Properties of the Optimal Regression Tree for Each

Set of Molecules

Polymer
Temperature

(K)

Number
of

terminal
nodes

Number of molecules
per class

Minimum Maximum

LLDPE–LDPE 296 25 1 23
MDPE–HDPE 296 9 1 27
PP 296 10 2 14
PP 313 4 3 13
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on an a priori classification trees is compared in
Figure 14 to the approach requiring an a posteriori
adjustment. We confirmed that both approaches
were highly correlated and presented a significant
bias. The variability in D estimates, depicted as
interquartile range, which was not minimal when
no training was performed, was mainly responsible
for the observed differences. Unexpected behaviors
appeared for very few molecules and were mainly
related to experimental errors. Deviations typically
ranged between 1 and 2 decades.

CONCLUSIONS

This article presents new predictive estimators of D’s
based on decision trees for molecules with M values

ranging between 50 and 1200 g/mol in polyolefin
materials. The main features of decision trees for the
prediction of D’s are that they are nondeterministic
(non-theory-dependent) and nonlinear (able to handle
complex behaviors or interactions). The final models
were highly comprehensible and should be adaptable
for a wide range of practical uses: the design of ma-
terials with controlled transport properties, the verifi-
cation of compliance of food contact materials, and
food sanitary surveys based on a risk assessment of
the migration of substances from packaging materials
into food articles.

According to a likely transport mechanism involv-
ing reptation-like motions, three topological descrip-
tors of the molecular structure in the absence of inter-
action with the polymer matrix (VWdV, �, and Iz/x)

Figure 12 Predicted average log10 D values versus values available in the database for (a) LLDPE–LDPE at 23°C, (b)
MDPE–HDPE at 23°C, (c) PP at 23°C, and (d) PP at 40°C. Each main subplot represents the values predicted with the full
regression tree, whereas the lower inserted subplots present the results inferred with the optimally pruned regression tree.
The upper inserted subplots depict the distribution of log10 D values as available in the database.
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were used as both classifiers and predictors. The
whole approach was tested on 628 D’s (242 molecules)
collected by the European SMT-CT98-7513 project and
normalized at 23°C for three typical polyolefin mate-
rials (LLDPE–LDPE, MDPE–HDPE, PP) and on 29 D’s
(26 molecules) measured in PP at 40°C. The three
descriptors, which were chosen independently of the
polymer matrix, were derived from the molecular
structure of each molecule. All 267 molecules were
minimized in vacuo and were subsequently oriented
along their main axes.

The three parameters were partially correlated
with M with a correlation rate that varied signifi-
cantly with the 3D shape of the considered mole-
cules. Thus, � and Iz/x of nonspherical molecules

were poorly correlated with M. We also verified that
none of the distributions of each parameter could
alone fit the distribution of the collected D’s. Also,
with an a priori tree classification, we were able to
gather pertinent molecules with similar D’s. Tree
regressions increased the previously mentioned pre-
dictability and significantly reduced the risk of mis-
classification. Both cross-validations and bootstrap
sampling demonstrated that the proposed approach
was predictive and robust when the regression tree
was conveniently simplified by prepruning and
postpruning. In particular, we demonstrated that
correlation coefficients ranging between 0.74 and
0.96 (90% confidence interval assessed by bootstrap
sampling) were achievable for all of the polymers.

Figure 13 Predicted 95th percentile of the log10 D values versus values available in the database for (a) LLDPE–LDPE at
23°C, (b) MDPE–HDPE at 23°C, (c) PP at 23°C, and (d) PP at 40°C. Each main subplot represents the values predicted with
the full regression tree, whereas the lower inserted subplots present the results inferred with the optimally pruned regression
tree. The upper inserted subplots depict the distribution of values as available in the database. n�, n�, and n
 indicate the
number of predicted values lower than, equal and greater than the reference value, respectively.
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In detail, the optimal regression trees involved all of
the tree descriptors with almost the same impor-
tance. For a rough classification of diffusing behav-
iors over a scale of D’s ranging between 10�17 and
10�13 m2/s, VWdV predominated for the subset of
molecules tested in polyethylene, whereas a combi-
nation of � and of VWdV was required in PP at 23°C.
For the small subset of molecules tested at 40°C, a
similar range of D, the main descriptors were VWdV,
and Iz/x.

As regression trees aim at gathering molecules with
similar D’s, a methodology was devised to robustly
calculate overestimates of D’s from the upper percen-
tiles of values collected within the same class. By
assuming a risk of 10% to underestimate the D’s col-

lected in the current database, we tested the 90th
percentile values of each terminal class/nodes on an
optimally pruned tree. For all polymers, the risk level
was never exceeded and the maximum underestima-
tion was slightly higher (by a factor 2) than the con-
ventional uncertainty in the measurements of D’s. In
addition to their foreseen ability and their iterative
construction process, decision trees were also pro-
posed for the standardization, (re)evaluation, and/or
adjustment of new data or of previously collected
data. This operation, known as data assimilation, aims
at transforming an initial set of disparate data into
well-validated data for the purposes defined previ-
ously. This approach was strengthened by a demon-
stration that the three proposed descriptors used as
either as classifiers or as regressors led to similar con-
clusions. Because of the absence of any fitting/learn-
ing when they were used as classifiers, the risk of
misclassification was higher but did not exhibit a sig-
nificant bias. As a result, the three molecular descrip-
tors that did not account for the interactions with the
polymer matrix seemed remarkable descriptors to de-
fine the analogies between diffusants.

Further work is desirable to extend the proposed
decision trees to new polymers and to account for
temperature effects. Many properties that control the
experimental values of D, such as the temperature,
polymer density, and crystallinity, could be intuitively
handled through a discrete formulation as decision
trees do. Indeed, for practical uses, D’s need to be
known for a given range of a given parameter (e.g.,
temperature). An estimation of the uncertainty due to
this simplification could be straightforwardly and ro-
bustly assessed from the lower and upper percentiles
of each terminal leaf/node.

NOMENCLATURE

D diffusion coefficient (m2/s)
VWdV Van der Waals volume [Å3]

Figure 14 Comparison of log10 D values obtained from
CARTs after optimal pruning for (a) LLDPE–LDPE at 23°C,
(b) MDPE–HDPE at 23°C, (c) PP at 23°C, and (d) PP at 40°C.
Each frame depicts the interquartile range.

TABLE V
Maximum Deviations Between the Predicted D Values

and the Values Available in the Database

Polymer
Temperature

(K)

95th percentile of
�log10(Dpredicted/Ddatabase)�

Full tree
Optimally

pruned tree

LLDPE–LDPE 296 0.92 1.04
MDPE–HDPE 296 1.08 1.11
PP 296 1.15 1.31
PP 313 0.51 0.79

The predicted D values were based on the average of all
data available at each node/class.

TABLE VI
Maximum Underestimations of the D Values and the

Values Available in the Database

Polymer
Temperature

(K)

5th percentile of
log10(Dpredicted/Ddatabase)
for all values that verify

Dpredicted � Ddatabase

Full tree
Optimally

pruned tree

LLDPE–LDPE 296 None �0.23
MDPE–HDPE 296 None �0.36
PP 296 None �0.22
PP 313 None None

The predicted D values were based on the average of all
data available at each node/class.
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� gyration radius [Å]
x�i position vector of the atom i
x�0 position vector of the center of mass
� � average operator
Iz/x shape parameter
i(t) impurity function at node t
t parent node index
Jt total number of child nodes at node t
�e(t,s) least-squares error criterion that splits the

node t with the split value
s split value
e(j) mean squared error at node j
M molecular weight (g/mol)
p(j�t) proportion of each class jj�1…Jt

at node t
� phenomenological exponent connecting D

and M
c third-order Kier and Hall cluster count index
r2 determination coefficient
	2 average quadratic error of prediction
p 
 F significance levels
r regression coefficient
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Kröger, M.; Ramı́rez, J.; Öttinger, H. C.; Vlassopoulos, D. Mac-
romolecules 2003, 36, 1376.

13. Kovarski, A. L. In Molecular Dynamics of Additives in Poly-
mers; VSP: Utrecht, The Netherlands, 1997; Chapter 4.

14. Reynier, A.; Dole, P.; Humbel, S.; Feigenbaum, A. J Appl Polym
Sci 2001, 82, 2422.

15. Reynier, A.; Dole, P.; Feigenbaum, A. J Appl Polym Sci 2001, 82,
2434.

16. Zhao, Y. H.; Abraham, M. H.; Zissimos, A. M. J Org Chem 2003,
68, 7368.

17. Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Classi-
fication and Regression Trees; Wadsworth: Pacific Grove, CA,
1984.

18. Loh, W. Y.; Shih, Y. S. Stat Sinica 1997, 7, 815.
19. Cussler, E. L. Diffusion, Mass Transfer in Fluids Systems, 2nd

ed.; Cambridge University Press: Cambridge, England, 1997.
20. Brandt, W. W. J. Phys Chem 1959, 63, 1080.
21. Willmann, R. D. J Chem Phys 2002, 116, 2688.
22. Lodge, T. P. Phys Rev Lett 1999, 83, 3218.
23. Bandyopadhyay, T.; Ghosh, S. K. J Chem Phys 2003, 119, 572.
24. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport Phenom-

ena, 2nd ed.; Wiley: New York, 2002.; Chapter 17.
25. Masaro, L.; Zhu, X. X. Prog Polym Sci 1999, 24, 731.
26. Kovarski, A. L. In Molecular Dynamics of Additives in Poly-

mers; VSP: Utrecht, The Netherlands, 1997; Chapter 7.
27. Manabe, S.-I. In Diffusion in Polymers; Neogi, P., Ed.; Marcel

Dekker: New York, 1996; Chapter 5.
28. Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and

Drug Research; Academic: New York, 1976.
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